Inference for stochastic neuronal models
نویسندگان
چکیده
منابع مشابه
Inference for Stochastic Neuronal Models
Stochastic models of some aspects of the electrical activity in the nervous system at the cellular level are developed. In particular, models of the subthreshold behavior of the membrane potential of neurons ar~ consid~r~d alon& ~ith the problem of parameter estimation of physiologically meaningful parameters of the developed models. Both ordinary and partial stochastic differential equation mo...
متن کاملStatistical Inference for Stochastic Epidemic Models
We consider continuous-time stochastic compartmental models which can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in more flexible modelling for many diseases. Following a Bayesian approach we show ...
متن کاملStochastic variational inference for hidden Markov models
Variational inference algorithms have proven successful for Bayesian analysis in large data settings, with recent advances using stochastic variational inference (SVI). However, such methods have largely been studied in independent or exchangeable data settings. We develop an SVI algorithm to learn the parameters of hidden Markov models (HMMs) in a time-dependent data setting. The challenge in ...
متن کاملInference Methods for Stochastic Volatility Models
In the present paper we consider estimation procedures for stationary Stochastic Volatility models, making inferences about the latent volatility of the process. We show that a sequence of generalized least squares regressions enables us to determine the estimates. Finally, we make inferences iteratively by using the Kalman Filter algorithm.
متن کاملSemiparametric Bayesian Inference for Stochastic Frontier Models
In this paper we propose a semiparametric Bayesian framework for the analysis of stochastic frontiers and efficiency measurement. The distribution of inefficiencies is modelled nonparametrically through a Dirichlet process prior. We suggest prior distributions and implement a Bayesian analysis through an efficient Markov chain Monte Carlo sampler, which allows us to deal with practically releva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 1990
ISSN: 0096-3003
DOI: 10.1016/0096-3003(90)90080-m